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Ovis aries is a vital livestock species in Irag. The Arabi breed plays a significant role in
the Iragi national agricultural production. Despite their importance, genetic studies on Arabi
sheep have remained limited. This study aimed to characterize, for the first time, the
complete mitochondrial genome of the Arabi sheep breed in Basrah, Irag. This is essential
for understanding the species' genetic diversity and for improving their productivity and
health. The findings will help enhance food security, reduce veterinary costs, and support
the Iraqi rural economy. To clarify its genetic diversity and evolutionary relationships, blood
samples were collected from 165 Arabian sheep. PCR amplified the mtDNA, which was
sequenced and analyzed using DNASTAR SeqMan Ultra, BLAST, and MEGA12 software
for genome assembly, mutation identification, and phylogenetic analysis. The complete
mtDNA genome was 16,619 base pairs long, aligning closely with the lengths reported in
other Qvis aries breeds. Three single-nucleotide variants were identified and deposited in
GenBank under accession numbers LC649167, LC649168, and LC649169, showing over
99% similarity to the Hamdani breed, suggesting a close maternal lineage and a possible
genetic admixture. The phylogenetic analysis, performed using the Neighbor-Joining
method in MEGA12 with 1,000 bootstrap replications, revealed genetic affinity among the
Arabi, Hamdani, and Lezgin breeds, supporting a common geographical origin. The
mtDNA's slow mutation rate, functional constraints, and human-mediated breeding
practices likely contributed to the observed genetic similarity among breeds. The identified
mutations in various mitochondrial genes may influence energy metabolism, growth, and
adaptation. This study provides valuable molecular data for the conservation and genetic
improvement programs of Iraqi sheep. It highlights the importance of mtDNA analysis in
understanding breed diversity and evolution.
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Introduction

global breeds, as many global breeds have been subjected to
deliberate selection linked to modern studies such as

Sheep are among the most important domesticated
animals in Irag; they were bred thousands of years ago for
their products, including meat, dairy, and wool (1,2). Arabi
sheep are considered among the most important breeds of
Iragi sheep. They are widely distributed across various
regions in Irag, and they contribute significantly to the sheep
products of Irag, such as milk and its derivatives, meat, and
wool too (3). Despite this importance, genetic studies on this
breed remain somewhat limited (4), which could partly
account for its relatively lower productivity compared with
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molecular genetics (5). Genetic studies are a powerful and
vital tool for understanding and improving farm animals,
contributing to increased productivity, improved product
quality, food security, and the preservation of genetic
diversity (6). Molecular genetic studies of livestock have
revolutionized animal husbandry in recent years.
Mitochondrial DNA is a unique tool that sheds light on the
maternal lineages of these animals and their evolutionary
trajectories (7). Mitochondria are essential cellular
organelles responsible for energy production; they also play
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key roles in apoptosis and overall cellular health. Uniquely,
mitochondria possess their own genetic material, known as
mitochondrial DNA (mtDNA) (8). Studying the mtDNA
genome can help understand the evolutionary lineages of
sheep and determine their genetic relationships with other
species or breeds (9). This could lead to the identification of
genetically distinct breeds in terms of production and disease
resistance (10). These studies may also help to identify and
conserve rare or endangered breeds (11) and estimate the
level of genetic diversity within breeds. Perhaps studying the
entire mtDNA genome could effectively distinguish between
local and exotic breeds (12). Understanding mitochondrial
mutations may help diagnose energy- or metabolic-related
genetic diseases in sheep (13), in addition to their effective
role in regulating apoptosis (14). It is important to note that
the mtDNA genome encodes several genes involved in
energy production and cellular signaling; therefore,
variations in mtDNA in sheep may influence disease
response, metabolism, and growth (15). Several studies have
linked genetic patterns to birth weight, development, and
their response to various environmental stressors (16). The
study of the mtDNA genome in sheep offers essential
insights into maternal lineages, domestication processes, and
evolutionary trajectories. Furthermore, mtDNA variation is
closely associated with functional traits, including
metabolism, growth, and overall health. Comprehensive
genome analysis also improves taxonomic resolution among
breeds and plays a pivotal role in guiding breeding programs
and conserving genetic resources (17). The mtDNA length is
approximately 16,617 base pairs long, consisting of 37 genes
representing the D-loop region and a portion of it for rRNA
(two genes), 13 protein-coding genes, and 22 tRNA genes
(18). Although the mtDNA genome is relatively conserved
and lacks introns, there is significant nucleotide diversity
among sheep breeds, which contributes to our understanding
of sheep evolution and domestication (19). In sheep, there
are multiple mtDNA haplogroups that are shared across
many breeds. This indicates genetic dispersal between
breeds, regardless of their breeding regions. Sheep in Europe
and Asia generally share the same genetic patterns,
suggesting complex domestication and selection. (20).

Although universal researchers have thoroughly
examined mitochondrial genomes across various sheep
breeds, their studies are limited to crossbred Iragi sheep;
thus, they remain insufficient and hinder conservation and
genetic improvement initiatives. This study aims to
characterize the mtDNA genome of Iragi Arabi sheep
molecularly.

Materials and methods
Ethical approve

The study has been approved by the Animal Ethics
Committee of the Department of Animal Production,
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College of Agriculture, University of Basrah, Basrah, Iraq,
dated 01/01/2024.

Blood samples

Blood samples were collected from 165 local Arabi sheep
(90 females and 75 males) raised by local farmers in Safwan
district, Basrah, southern Iraq (approx. 30.1131°N,
47.7194° E). The blood was drawn through the jugular vein.

DNA Extraction and primers

Genomic DNA was purified from the leukocyte fraction
of whole blood samples using the DNeasy® Blood & Tissue
Kit (Qiagen, Germany), strictly adhering to the
manufacturer’s guidelines. Leukocytes were selected as they
constitute the predominant source of nuclear DNA in
mammalian blood. The purified DNA was eluted with
nuclease-free water, rehydrated overnight at 4 °C, and the
purity and quantity of the product were then verified using a
nanodrop. The purification process was carried out, and the
purified product was subsequently stored at —20 °C until
further analysis (21). The reference sequence MF004242
was selected as it represents the complete mitochondrial
genome of Iraqi sheep from the Al-Hamdani breed, which is
genetically and geographically the closest to the Al-Arabi
breed. This choice was made to enhance the accuracy and
reliability of the analysis. For comprehensive coverage, the
genome was divided into six segments of comparable length,
and primers were designed using the NCBI Primer-BLAST
program (22) to specifically amplify mitochondrial genome
regions while avoiding nuclear mitochondrial sequences
(NUMTS) (Table 1).

PCR protocol

PCR amplification was performed as described by Tan et
al. (23), with a total reaction volume of 20 puL containing
seven pL nuclease-free water, (20 ng/uL) 1 uL. DNA sample,
10 pL 2x master mix (Phusion High-Fidelity PCR Master
Mix, Thermo Fisher Scientific, USA), one pL primer (10
pmol/uL), each one is forward and reverse. The
amplification conditions were as follows: 98 °C (initial
denaturation, 30 s), followed by 35 denaturation cycles at 98
°C (30 s), annealing at 59-60 °C (according to each primer)
for 30 s, and then 72 °C (extension, 90 s). The final step of
the extension was conducted at 72°C for 5 minutes. The
purification process was performed, and the products were
sent for sequencing. The mtDNA genome assembly began
with assessing the quality of the raw paired-end reads,
followed by trimming low-quality bases and adapter
sequences. Reference-guided assembly was then performed
using DNASTAR SegMan Ultra version 17.1, employing the
Ovis aries mitochondrial genome from GenBank (Accession
No. MF004242) as a template. To validate the assembly and
identify potential novel variants, a complementary de novo
assembly was conducted with IDBA-UD version 1.1.3, a tool
optimized for managing variable sequencing coverage. The
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outputs from both strategies were merged to generate the
final consensus sequence, and read-depth analysis was
applied to confirm the completeness and accuracy of the
assembled genome. The obtained sequences were aligned
using the BLASTN tool on the NCBI website, with the Ovis
aries mitochondrial genome (Accession No. MF004242) as
a reference. Alignments were performed with default
parameters, an e-value threshold of 1e-5, a minimum identity
of 99%, and coverage above 98%, ensuring precise detection
of sequence similarity and reliable identification of
nucleotide variants (24). The multiple sequence alignment
(MSA) of the obtained sequences was conducted in MEGA
version 12 using the ClustalW algorithm. The sequences
were compared with the reference mtDNA genome of sheep
(Ovis aries) retrieved from GenBank (Accession No.
MF004242), and variations were detected directly through
the alignment process. To infer evolutionary relationships, a

Table 1: The primers of fragments of mtDNA (22)

phylogenetic tree was generated using the Neighbor-Joining
(NJ) method in MEGA 12, with 1,000 bootstrap replications
and reference sequences from several sheep breeds. Genetic
distances were estimated using the Kimura 2-parameter
model, providing a reliable framework for evaluating the
phylogenetic relationships among the examined samples
(25). The circular map of the Arabian sheep mtDNA genome
(16.619 bP) was created in Geneious Prime (V. 1.2). The
genome sequence data generated in this study were used after
the raw reads were aligned to the Ovis aries reference
genome using the Map to Reference feature. A read coverage
plot was then added to show the distribution of coverage
depth across the genome. Restriction enzyme sites were
identified using the software's built-in restriction enzyme
analysis tool (26). This map was used to illustrate the
genome structure and enzyme site distribution and to ensure
the accuracy and comprehensiveness of the analysis.

Gene Fragment  Direction Primer length (bp) temperature (°C)
Fragment | Forward CCCAAAACCTCCCACTCTCC 2770 60
Reverse ATGCTACCTTTGCACGGTCA
Fragment 2 Forward GCTCTCATTGGAGCCCTACG 2770 60
Reverse TGGTTGATGCTTCTGTGGCT
Fragment 3 Forward ACACGGGCTTACTTCACGTC 2770 60
MFE004242 Reverse ACTTCTTGCGCGTCTATGGT
Fragment 4 Forward GGAGCCACCCTTGCACTAAT 2770 60
Reverse TGAACCGTAAACCCCGTCTG
Fragment 5 Forward ~ AACCATACCCATCGCAGCAA 2770 60
Reverse TTTGGGTGAGGGCGCATATT
Fragment 6 Forward GCCCCACTATCAACACCCAA 2769 59
Reverse GCTCGTGATCTAGTGGACGG
Results All detected variants have been registered in the

The quality of the whole mtDNA genome amplification
was evaluated using agarose gel electrophoresis (Figure 1).
The genome was divided into six approximately equal
fragments, each producing a distinct and well-resolved band
without additional or nonspecific fragments. These findings
demonstrate the efficiency of the amplification process and
confirm that the DNA samples were of sufficient quality for
subsequent sequencing and downstream analyses.

The complete mtDNA genome of the Arabian sheep was
16,619 bpairs, comparable to several other Ovis aries sheep
breeds. Sequence analysis revealed three single nucleotide
variants (SNVs) identified by comparison with the Ovis aries
reference genome sequences (GenBank accession number:
MF004242), These variations were found to result from
several silent and missense mutations, distributed across
several  mitochondrial  genes, including NADH
dehydrogenase subunit genes (ND), cytochrome b (CYTB),
ATP synthase subunit 8 (ATP8), and cytochrome ¢ oxidase
(COX) genes.
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GenBank database under accession numbers: LC649167,
LC649168, and LC649169. These variants are caused by
several mutations distributed across different regions of the
genome, some in protein-coding genes such as ND2, ND4,
ND5, and COX1, others in tRNA and rRNA genes, and the
control region. Their effects may range from silent mutations
that do not alter the amino acid sequence to missense
mutations that can affect the function of proteins involved in
bioenergy production and cellular activity. The identified
single-nucleotide variants (SNVs) of the Arabi sheep
mtDNA genome exhibited high sequence identity with the
Hamdani reference gene (MF004242), ranging from 99.92%
t0 99.93% (Table 2).

Figure 2 shows the circular map of the complete
mitochondrial genome of Arabi sheep, with a total length of
16,619 bp. The map illustrates the arrangement of the 37
mitochondrial genes, including 13 protein-coding genes, 22
transfer RNA (tRNA) genes, two ribosomal RNA (rRNA)
genes, and the control region. This organization highlights
the structural composition of the mitochondrial genome and
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indicates the locations of genes involved in energy
production and essential cellular functions.

A phylogenetic tree analysis (Figure 3) using the
Neighbor-Joining method with 1,000 bootstrap replications et
showed an apparent genetic affinity between the Arabi sheep —
and the Hamdani and Luzjin breeds, as well as a relative
divergence between eastern and western breeds.

Analysis of genetic distances derived from the complete
mitochondrial genome sequences revealed a pronounced
genetic similarity among the examined sheep breeds. Using
the Kimura 2-parameter model in MEGA 12, pairwise
distances were estimated to range from 0.03% to 0.58%.
Notably, the Arabi sheep showed the highest genetic
proximity to the Hamdani and Luzjin breeds, with sequence
identity exceeding 99.9%.

| —
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Figure 1: Agarose gel electrophoresis (1%) of the Arabi
sheep mtDNA genome

Table 2: Sequence identity (%) between the reference gene (MF004242) and the identified single-nucleotide variants (SNVs) in
the mitochondrial genome of Arabi sheep

No. Accession No. Sample size (n) MF004242 LC649167 LC649168 LC649169
1 LC649169 78 99.92 99.93 99.93 100.00
2 LC649167 31 99.90 100.00 99.93 99.92
3 MF004242 Reference 100.00 99.90 99.92 99.92
4 LC649168 56 99.93 99.93 100.00 99.93

KUS75248 breed Oula Tibetan
KF9358337 breed Tashkurgan
KF302446 breed Merinizzata |taliana
MK3IE1457 breed Ganjia

KF938333 breed Yecheng
OR459644 breed Karachaev
KF938345 breed Gala

V427606 breed Duoma
KUBE1215 breed Suffolk

OR459657 breed Lezgin
LCE49189 breed Arabi

a0 0.00
0.00 | ggeg 0.00
0.00 Jgoss 000 LCB49167 breed Arabi

0.00 LCE49168 breed Arabi
0.00

MFO04242 breed Hamdani

100% [oo0 OR459764 breed Buryat
o.M 700 OR459690 breed Volgograd

100% [go0 HMZ236175 breed Romney

057 lW HM236174 breed Merino

Figure 3: The phylogenetic tree of mtDNA genome
sequences of different sheep breeds, including the Arabi
breed, was constructed using the maximum likelihood
method, showing a close genetic relationship between the
Arabi, Hamdani, and Luzjin breeds.

Discussion

Figure 2: Circular maps of the complete mtDNA genome of
Arabian sheep (16,619 base pairs), showing the organization
of 37 genes, including 13 protein-coding genes, 22 tRNA
genes, and two ribosomal RNA genes, in addition to the
control region.

The similarity of Arabian sheep to other breeds (in
neighbouring geographical areas) may be due to the
closeness of their mtDNA genomes. (27). On the other hand,
the results show that the Arabi and Hamdani sheep breeds
belong to the same species (Ovis aries). However, this study
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presents, for the first time, a comprehensive characterization
of the mitochondrial genome of the Arabi sheep breed,
identifying novel single-nucleotide variants (SNVs) and
depositing them in GenBank. Although previous studies,
such as Mustafa et al. (28), have indicated that most local
sheep breeds, including the Hamdani and Karadi in Iraqi
Kurdistan, share common maternal ancestry within known
haplogroups, the present study provides detailed and
accurate molecular data that can be used for genetic resource
conservation and to strengthen future breeding and genetic
improvement programs, The Hamdani and Arabi sheep
breeds are maintained in geographically adjacent regions of
Iraq, a factor that may have promoted genetic admixture and
interbreeding  between  them.  Consequently, the
mitochondrial DNA similarities observed could be attributed
not only to a shared geographic origin and common
evolutionary background, but also to the impact of
hybridization events. (29). It is also important to note that a
slow rate of change characterizes the mtDNA genome in
sheep, as it contains a small number of genes essential for
survival, and it is relatively small; therefore, influential
mutations are often harmful and do not persist, which leads
to the genome being similar between breeds (30). The reason
may also be human intervention in selecting and
crosshreeding sheep for high productivity, which may reduce
genetic diversity (31). The presence of multiple SNVs results
from mutations occurring in distinct regions of the genome;
this is common in the mtDNA and is considered an essential
molecular marker in genetics and evolution (32).
Contributing to the study of genetic diversity and
evolutionary relationships among local breeds, mutations in
different genes and locations within the sheep mtDNA
genome may have a significant effect, depending on the
functions of the genes in which they occur (33). The impact
of missense mutations on the function of the resulting protein
depends on the chemical nature and properties of the amino
acids before and after the mutation (34). The occurrence of
mutations in tRNA may affect translation accuracy,
ribosomal binding, and the overall stability of the structure
(35). Their presence in rRNA can influence both mRNA and
tRNA binding sites, translation efficiency, and ribosomal
unit composition (36). In general, mutations in rRNA and
tRNA may indicate lineage differentiation, environmental
adaptation, or thermal tolerance, and may affect growth rates
or fertility (37). Moreover, mitochondria supply the energy
required for sperm motility and membrane integrity, and
similar associations have been reported in Awassi rams
between seminal plasma enzymes, mineral concentrations,
and semen quality (38).

On the other hand, mutations in the ND2, ND4, ND5, and
ND6 genes are significant, as these genes encode subunits of
NADH dehydrogenase, a critical enzyme complex in the
oxidative phosphorylation pathway. This complex plays an
essential role in mitochondrial energy metabolism, and
variations within its subunits may therefore influence
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cellular energy production and adaptive responses to
environmental stressors (39).

In this study, missense mutations were identified in the
ND2 and ND4 genes. Since these genes encode essential
subunits of NADH dehydrogenase, such amino acid changes
may affect electron transfer efficiency and potentially alter
the protein's three-dimensional conformation, consistent
with previous reports (40). Although silent mutations were
detected in the CYTB gene, their possible influence on
mRNA stability, protein-binding regulatory sites, and
translation efficiency indicates that these variants could
contribute to functional diversity within the mitochondrial
genome, aligning with the findings of this study (41). Silent
mutations in the control region have also been reported; they
may affect transcription and replication processes and,
consequently, the mtDNA genome stability. Silent mutations
have also been recorded in the control region, which may
affect transcription and replication processes and secondary
structures, thereby affecting mtDNA genome stability (31).
In this study, a silent mutation was identified in the ATP8
gene. Although quiet, such a variant may potentially
influence  RNA secondary structure and translation
efficiency (36). Moreover, mutations were identified in the
COX1 and COX3 genes, both of which play essential roles
in environmental adaptation. These alterations may, in some
cases, impair mitochondrial energy production, thereby
negatively affecting disease resistance and growth
performance, as documented in earlier studies (24).

The diversity in the phylogenetic tree may be due to
genetic mixing or hybridization. It can also be noted that
there is an apparent genetic affinity between the Arabi breed
and the Hamdani and Lezgin breeds, which may support the
hypothesis that they share a common geographic origin. It
can also be noted that there is an evolutionary divergence
between the western and eastern breeds. Here, the
importance of studying the mtDNA genome emerges in
understanding the evolutionary relationships that play a vital
role in maintaining genetic diversity and improvement of
sheep (27,42).

This study provides the first complete mtDNA genome
characterization of the Arabi sheep in lIrag, with novel
variants deposited in GenBank, reveals low genetic diversity,
and offers a valuable molecular reference for conserving
genetic resources and advancing future breeding programs.

Conclusion

The presence of multiple single-nucleotide variants
(SNVs) in Arabi sheep in Basrah Governorate, Irag, may
represent an essential indicator of genetic diversity within
this breed and its evolutionary relationship with other breeds.
This diversity may contribute to understanding responses to
different environmental conditions, as it may serve as a
molecular marker for selecting and genetic improvement
programs. There is therefore a need for further studies
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linking the mtDNA genome to different productions and
physiological performances.
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