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Adana Dewlap pigeons are a unique breed native to the Adana region of Turkey,
recognized for their distinctive flight characteristics. The current study investigates the
growth dynamics of these pigeons using both traditional and advanced modeling techniques,
aiming to identify the most accurate approach. Due to their limited reproductive cycle
(typically two or three clutches per year), only a few offspring can be reared annually from
a single pair, and many hatchlings do not reach sexual maturity. A dataset comprising 43-
day body weight measurements from 88 pigeons collected over seven years was used. The
average daily weight was modeled using well-established growth functions, including the
Richards, Logistic, and Gompertz models. MATLAB scripts were developed for parameter
estimation, and the reliability of model predictions was evaluated using metrics such as
Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and R2. In addition
to static models, this study emphasizes the importance of capturing the temporal dynamics
of growth in avian species like the Adana Dewlap pigeon. The Adaptive Kalman Filter
(AKF) was employed to decompose the growth process into position, velocity, and
acceleration for a more detailed analysis. The velocity curve shows a rapid increase in
weight gain during the first two weeks, consistent with a critical post-hatch developmental
phase. This is followed by gradual deceleration, suggesting that the pigeons reach a
physiological threshold at which weight gain slows due to metabolic adaptation or genetic
constraints. Acceleration analysis further substantiates this trend, with positive values
during early development and negative values during later stages, characteristic of the
asymptotic phase of sigmoidal growth curves, as described by the Logistic, Gompertz, and
Richards models. These results demonstrate that AKF not only fits observed data accurately
but also reveals latent transitions in growth behavior, offering a robust tool for real-time
monitoring and analysis in biological development studies.

DOI: 10.33899/ijvs.2025.160914.4333, ©Authors, 2025, College of Veterinary Medicine, University of Mosul.

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Introduction

particularly notable for its distinct skeletal structure,
prominent dewlap, and characteristic flight behavior. Despite

Pigeons have historically played a significant role in
human civilization, symbolizing peace, communication, and
companionship. Domesticated pigeons, which descend from
the wild rock pigeon (Columba livia), display remarkable
phenotypic diversity as a result of centuries of selective
breeding (1-3). Among these, the Adana Dewlap pigeon,
selectively bred in the Adana region of southern Turkey, is
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their cultural and genetic significance, the developmental
biology and growth patterns of this breed remain largely
underexplored in the scientific literature. Accurately
modeling avian growth is essential for biological research,
conservation efforts, and the optimization of breeding
strategies. Growth models provide valuable insights into
developmental phases, physiological constraints, and energy
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allocation mechanisms across the life span. Classical
mathematical models-such as the Gompertz, Logistic, and
Richards functions-have been widely employed to describe
the sigmoidal growth trajectories of various species.

While these static models effectively capture overall
growth trends, they often fall short in accounting for local
variations, measurement noise, and environmental or
physiological fluctuations commonly observed in real
biological systems. To address these limitations, the present
study combines both static and dynamic modeling
approaches to analyze the growth dynamics of Adana
Dewlap pigeons. The empirical analysis is based on a unique
longitudinal dataset comprising 43-day body weight
measurements from 88 pigeon chicks collected over seven
years. Initially, traditional growth models such as the
Logistic, Richards, and Gompertz functions were applied and
evaluated using statistical performance indicators, including
Mean Squared Error (MSE), Mean Absolute Percentage
Error (MAPE), and the coefficient of determination (R2).
Beyond static curve-fitting, the study introduces a dynamic
state-space framework utilizing the Kalman Filter (KF) and
its adaptive variant, the Adaptive Kalman Filter (AKF).
While the standard KF is suitable for estimating latent
variables, such as growth velocity and acceleration from
noisy weight data, the AKF enhances adaptability by
dynamically updating the process noise covariance. This
allows the model to respond effectively to abrupt changes in
growth behavior, such as those caused by feeding variations
or metabolic adaptation.

The AKF approach decomposes the growth trajectory
into three interpretable components: position (body weight),
velocity (rate of weight gain), and acceleration (rate of
change in gain). This decomposition provides a deeper and
more dynamic understanding of the temporal evolution of
growth under biologically uncertain conditions. The results
demonstrate that while traditional models effectively
characterize the overall sigmoidal growth curve, they are
limited in detecting short-term fluctuations and transitional
phases. In contrast, the AKF captures early-stage
acceleration and late-stage deceleration with greater fidelity,
reflecting the underlying biological processes. By integrating
classical growth functions with adaptive filtering techniques,
this study offers a robust, real-time, and flexible framework
for modeling avian growth. The proposed approach has
broad applicability in animal science, precision poultry
farming, and veterinary diagnostics, where dynamic growth
monitoring and anomaly detection are increasingly essential.
The growth process in animals is a complex biological
phenomenon influenced by both genetic structure and
environmental conditions. Quantitative modeling of this
process is of critical importance in poultry production for
determining growth potential, guiding breeding strategies,
and optimizing feeding programs.

In this context, sigmoidal mathematical models are
commonly used to represent growth curves. Among these,
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the Gompertz, Logistic, and Richards functions are widely
applied. The mathematical modeling of avian growth has
become an essential field in poultry science due to its
implications for genetic selection, feeding strategies, and
production efficiency. Numerous nonlinear models, such as
the Gompertz, Logistic, and Richards models, have been
extensively used to describe biological growth curves.
Naring et al. (4) emphasized the suitability of Gompertz and
Richards models for poultry growth. They highlighted the
biological flexibility of the latter. Similarly, Darmani Kuhi et
al. (5) reviewed a wide range of growth models, favoring
flexible four-parameter models such as Richards and Lopez
for their superior performance across various experimental
conditions.

Extending this literature to underrepresented avian types,
Ozbek (6-8) conducted a series of studies focusing
specifically on Adana dewlap pigeons, a regionally unique
breed from southern Turkey. In one study, nine nonlinear
models were systematically compared using a 43-day
average weight dataset from 68 pigeons. The Richards model
yielded the best fit based on MSE, MAPE, and R2. In a
subsequent study (8), the sample size was increased to 88
pigeons, and the same outcome was again observed. Beyond
static curve fitting, Ozbek (8) also applied a Discrete-Time
Stochastic Gompertz Model (DTSGM), wherein the time-
varying parameter was estimated using an Adaptive Kalman
Filter (AKF). This approach, modeled as a time-varying
AR(1) process, allowed real-time parameter estimation and
exhibited excellent predictive accuracy with low error
metrics (MSE = 270; R? = 0.98; MAPE = 2.3%). Kalman
filtering's recursive structure also allowed adaptive modeling
even under data non-stationarity, as confirmed through
Augmented Dickey-Fuller tests. Together, these studies fill a
significant gap in the literature by systematically comparing
classical nonlinear models and introducing dynamic time-
series modeling for species of pigeon growth rarely studied
in this context. The results consistently support the Richards
function for static analysis and the DTSGM + AKF
framework for dynamic growth modeling. The observed
variation in clutch intervals across seasons is closely linked
to environmental factors. During fall and winter, the interval
between clutches is approximately 45 days.

In contrast, in spring and early summer, it shortens to 30—
32 days. This seasonal difference can be attributed to more
favorable environmental conditions in spring and summer,
including longer daylight duration, milder temperatures, and
improved food availability. These factors collectively
enhance the reproductive efficiency of pigeons and reduce
the recovery time between clutches. Therefore, spring and
early summer represent the peak of the broodiness season for
most pigeon breeds (9-10).

Pigeon chicks are altricial, meaning they hatch in a highly
undeveloped state and are entirely dependent on parental
care. Two factors are critical for their survival and growth
during the early post-hatching period: (i) Nutrition, primarily
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provided in the form of crop milk-a nutrient-rich secretion
produced by both parents, though predominantly by the
mother, and (ii) Thermoregulation, which is maintained
through the mother's brooding behavior since the chicks
cannot regulate their body temperature independently at this
stage. Maternal body weight serves as an indirect indicator
of nutritional status and crop milk production capacity. A
well-nourished mother with sufficient energy reserves is
better equipped to meet both the demands of intensive
feeding and thermoregulation. Thus, maternal weight and the
efficiency of the nutritional system are essential determinants
of early chick development and survival in pigeons (11-13).

Materials and methods

Gompertz Model

In this section, the most commonly used growth models
in the literature are explained (14-16).
W(t) = A.exp(-exp(B-Kt))
Where W(t): Body weight at time t, A: Asymptotic maximum
weight, B: Displacement along the time axis, K: Growth rate
constant.

Logistic Model

W(t) = _ A

1+exp(B —Kt)

Where: A: Asymptotic maximum weight. B: Displacement.
K: Growth rate constant.

Richards Model

W (t) = A (L+v.exp(-K (t—t,))) ™"

Where: A: Asymptotic maximum weight. K: Growth rate
constant. to: Inflection point. v: Shape parameter (flexibility).

State-space model for pigeon growth

Linear discrete-time stochastic state-space models were
developed in the 1960s for applications such as tracking and
controlling the position of satellites, guided missiles,
spacecraft, and maneuverable targets. In addition, state-space
modeling has found widespread use for modeling physical,
physiological, and economic processes (17-20). The
estimation of the state vector in a linear discrete-time
stochastic state-space model was introduced by Kalman (21).
The Kalman Filter (KF) is essentially a recursive solution to
the least-squares estimation problem (22-24). There is a
substantial body of literature on the Kalman filter, including
its derivation, theoretical properties, and diverse applications
(25-30). The general form of a discrete-time linear state-
space model consists of two equations:

State Equation: X,., = A X, +W,
Observation Equation: Y, = H, X, +V,

Where: x, €R" is the state vector (true unobserved states).
y, € R" is the observation vector (measured outputs). A is
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the state transition matrix. H, is the observation matrix.
w, €R" is process noise, assumed to be Gaussian with
covariance Q. v, e R™ is measurement noise, assumed to be
Gaussian with covariance R.

Growth, velocity, and acceleration definitions
The growth of pigeons is represented by the weight
function w (t) . The first derivative of the weight with respect

to time means the growth velocity v(t):

dw (t)
v(t) = —2
O==4
The second derivative defines the growth acceleration af(t):
d?W (t)
v(t) =
® dt

In this study, the state vector X, is constructed from three

quantities: weight, velocity, and acceleration. The state
vector is explicitly defined as:

Where \, : Represents the body weight at time step k, v, :

Represents the growth wvelocity (the first derivative of
weight), a, : Represents the growth acceleration (the second

derivative of weight).
Wk

For the pigeon growth modeling application: X, =V,

8

Where: W, : Estimated body weight at time k. v, : Estimated
velocity (first derivative of weight). a4 : Estimated
acceleration (second derivative of weight).

1 At 0.5At?
The system matrices are defined as: A=0 1 At

0 0 1
H, =[10,0]
Where At =1 day. The Kalman filter, based on initial values
of X, and P, is defined by the following equations:

)’ZI: = AK—l)/ZI:r—l’ I:)k7 = j’k (A(—lpktlA;——l +Qk—1)

N =Y, —HX, Pnk = HkPk_HII +Ry

K =RH (P % =% +Knn. B =(1-KH)R
K, , known as the Kalman Gain Matrix (25-28). Here N,

represents the innovation vector with the covariance matrix
P

n*
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Results

The dataset used in this study consists of growth
measurements collected from Adana Dewlap pigeons. The
weights obtained from the measurements are given in Table
1. This breed is characterized by rapid early-stage growth,
medium body size, and a robust skeletal structure. Their
consistent genetic background and controlled breeding
environment provide a reliable foundation for quantitative
growth modeling. These attributes make Adana pigeons an
ideal subject for evaluating the performance of dynamic
estimation techniques, such as the Kalman Filter (KF) and
Adaptive Kalman Filter (AKF).

Table 1: Weights obtained from measurements

Day Weight Day Weight
1 14 22 375
2 20 23 406
3 30 24 415
4 45 25 408
5 63 26 425
6 85 27 421
7 106 28 414
8 134 29 428
9 167 30 431
10 189 31 432
11 224 32 437
12 237 33 431
13 269 34 416
14 294 35 428
15 295 36 420
16 295 37 419
17 327 38 428
18 344 39 421
19 343 40 424
20 379 41 424
21 378 42 429
43 430

To the best of our knowledge, this study is the first to
simultaneously model the weight, velocity, and acceleration
dynamics of Adana pigeons using both KF and AKF.
Previous research has primarily focused on weight
estimation alone, without incorporating higher-order
derivatives or dynamic modeling. In this study, real-world
pigeon growth data were used for analysis. Both the Kalman
Filter and its adaptive counterpart were applied to the dataset.
Results show that the AKF outperformed the standard KF,
yielding lower Root Mean Squared Error (RMSE) values,
demonstrating its superior ability to capture the underlying
growth dynamics under real conditions (Table 2).

As shown in Table 3 and Figures 1-3, the Richards model
provided the best fit among the traditional static models,
closely followed by the Gompertz model. Both models

captured the sigmoidal nature of growth, but Richards
exhibited superior accuracy across all metrics. The Logistic
model showed higher MSE and Mean Absolute Percentage
Error (MAPE), indicating lower predictive performance.
MSE R? and MAPE equations are given in the appendix.

Table 2: Static Growth Model Comparisons

Model MSE R? MAPE (%)
Richards 77.18 0.9957 2.28
Gompertz 77.41 0.9957 231
Logistic 133.32 0.9925 7.99

Table 3: Adaptive Kalman Filter Performance

Model MSE R? MAPE (%)
AKF 41.84 0.9977 2.19
Measured vs Gompertz Fit
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Figure 1: Measured vs Gompertz Fit.
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Figure 2: Measured vs Logistic Fit.
Measured vs Richards Fit
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Figure 3: Measured vs Richards Fit.
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According to table 2 and figures 4 and 5, the AKF
approach significantly outperformed all static models. The
reduction in MSE and increase in R2 and MAPE underscore
AKEF's ability to dynamically adjust to biological variability
in growth. In biological systems, particularly in avian species
like Adana Dewlap pigeons, understanding not only the final
body weight but also the Dynamics of how that weight
changes over time is essential. The Kalman filtering
approach, especially in its adaptive form, allows us to dissect
these changes into measurable, interpretable trends that offer
valuable insight into growth patterns. The velocity plot
highlights that growth is not constant: there is a noticeable
increase in weight gain during the first two weeks. This
corresponds to a critical post-hatch developmental phase,
during which nutritional intake and tissue development are at
their peak. As time progresses, the velocity flattens,
suggesting that the pigeons have reached a physiological
threshold at which additional weight gain slows due to
metabolic adaptation or the approach of genetic potential.

Measured vs Estimated Weight using AKF (Weight + Velocity + Accelerz
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Figure 4: Measured vs Estimated Weight using AKF (Weight
+ Velocity Acceleration).

Estimated Growth Velocity using AKF
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Figure 5: Estimated Growth Velocity using AKF.
Discussion
Recent veterinary studies have demonstrated the

effectiveness of molecular modeling approaches for
pathogen identification in livestock infections, particularly
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Theileria species (29). Integrating bacterial resistance data,
such as those related to Escherichia coli prevalence in poultry
environments, enhances the robustness of biological system
modeling (31).

The acceleration plot is particularly informative. The
early-stage positive acceleration reflects a healthy, natural
growth trajectory. However, the latter negative acceleration
indicates the beginning of the asymptotic phase of the
sigmoidal growth curve, commonly modeled by Gompertz or
Richards functions. This consistency suggests that the AKF
not only fits the data but can reveal latent growth transitions
more explicitly. Similar to tissue reconstruction in canine
urinary models, the adaptive dynamics observed in pigeon
growth may reflect underlying regenerative physiology (32).

The impact of probiotics on microbial balance and
nutrient absorption has been confirmed in avian models,
supporting the observed modulation of growth dynamics
(30). Herbal supplementation in poultry, such as in quail
growth and egg quality optimization, has shown significant
physiological effects that parallel those observed in this
study (33). Recent findings on the role of postbiotics in
shaping the gut microbiota and improving nutrient
digestibility provide further context for interpreting
acceleration in growth (34).

The Richards model yielded the best overall fit among
traditional static models, corroborating its known flexibility
and suitability for biological growth phenomena. However,
its inability to accommodate real-time fluctuations limits its
ability to accurately model biological systems under dynamic
conditions. The Adaptive Kalman Filter (AKF) emerged as a
more powerful tool by dynamically adjusting its internal
parameters in response to real-time measurement
innovations. Unlike static models with fixed structures, AKF
accommodates time-varying changes, thus delivering more
accurate growth predictions. The observed decrease in MSE
and increase in R? validate the AKF's enhanced performance.
Figures 4 and 5 further highlight the AKF's ability to
dynamically track the growth and velocity of Adana dewlap
pigeons. While static models like Richards capture overall
growth trends, AKF captures transient dynamics and rapid
changes, which are crucial in real-world biological
monitoring applications.

Furthermore, the incorporation of the state-space
modeling  framework  signifies a  methodological
advancement not previously applied in pigeon growth
studies. By capturing latent dynamics, such as velocity and
acceleration, AKF enables more robust decision-making and
early anomaly detection in the growth process. These
findings suggest that AKF is highly suitable not only for
pigeon growth modeling but also for broader applications in
precision poultry farming, biological system analysis, and
adaptive monitoring, where dynamic variability plays a
crucial role. When the models were compared using MSE,
MAPE, and R2, the new model we proposed performed
better.
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Conclusion

This study demonstrates the applicability of Adaptive
Kalman Filtering in modeling the multidimensional
dynamics of pigeon growth. By decomposing the process
into position, velocity, and acceleration, we obtain a
comprehensive understanding of both the magnitude and
nature of change. Such a layered view is crucial for
applications in animal science, breeding optimization, and
health monitoring in poultry production systems. This study
compared static growth models with an Adaptive Kalman
Filter (AKF) approach for modeling the growth dynamics of
Adana dewlap pigeons. While the Richards model was the
best static option, AKF demonstrated superior performance
by accommodating real-time variability and dynamic state
estimation. This approach is not only applicable to pigeons
but also to broader animal growth modeling scenarios where
adaptation to time-varying conditions is essential. The
integration of a state-space model with the innovation-driven
adjustment mechanism of the AKF yielded a modeling
strategy that captures biological growth dynamics with high
fidelity. This is particularly relevant for applications
requiring continuous monitoring and dynamic control, such
as livestock management and veterinary diagnostics. Future
research should explore integrating AKF with nonlinear
estimation techniques, ensemble filtering approaches, or
machine learning methods to further enhance its predictive
capabilities. Additionally, applying AKF frameworks to
broader biological datasets across multiple species could
generalize the findings and strengthen adaptive growth
modeling. The estimated velocity (first derivative of
position) represents the daily weight gain of the pigeons. It is
observed that velocity increases significantly during the
initial growth phase, reflecting the rapid development of
young pigeons. Around the mid-growth period, the velocity
tends to stabilize, indicating that the birds are approaching
their growth plateau. In the final phase, the velocity gradually
decreases, a typical behavior as the animal reaches its
genetically determined size limit. Similarly, the estimated
acceleration (the second derivative of position) provides
insight into dynamic changes in growth rate. Positive
acceleration during early growth days suggests increasing
velocity, meaning the pigeons are not only gaining weight
but gaining it faster. As the growth stabilizes, the
acceleration approaches zero. In later stages, negative
acceleration values indicate deceleration in growth, signaling
that the pigeons have entered the saturation phase of their
growth curve. These patterns are consistent with biological
sigmoidal growth behaviors and validate the use of the
adaptive Kalman filter for accurately modeling both growth
dynamics and their derivatives in avian species.
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