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Strongyloidiasis, caused by Strongyloides stercoralis, is a globally distributed parasitic
infection with significant public health concerns. Due to its ability to establish chronic auto-
reinfection, understanding its physiological impact on host biochemistry, immune response,
and metabolic homeostasis is crucial. This study aims to assess the systemic effects of S.

Keywords: stercoralis infection in a murine model using a combination of biochemical, immunological,
i’ijte(?rcora"s and metabolic analyses. Male Wistar rats (n=30) were divided into three groups: control
Kidney (uninfected), low-intensity infection (500 larvae), and high-intensity infection (2000
Function larvae). Infection was established via oral administration of infective third-stage larvae (L3).
After 30 days, blood, urine, and fecal samples were collected for biochemical assays,
- immune profiling, and metabolic analysis. Serum markers of inflammation (IL-6, TNF-a,
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M.A. Alfatlawi and IFN-y), as well as oxidative stress markers (malondialdehyde, catalase, glutathione

peroxidase), were measured using enzyme-linked immunosorbent assays (ELISA) and
spectrophotometry. Renal and hepatic function was assessed via blood urea nitrogen (BUN),
creatinine, ALT, and AST. The work was performed from November 1st to December 1st,
2024, in the Laboratory of Parasitology at the College of Veterinary Medicine, University
of Al-Qadisiyah. Infected rats displayed significant increases in IL-6, TNF-a, and IFN-y
levels. Oxidative stress markers were elevated, with higher MDA levels and reduced
catalase and glutathione peroxidase activity in infected groups. Kidney and liver function
tests revealed increased BUN, creatinine, ALT, and AST levels, suggesting renal and
hepatic dysfunction. This study provides a comprehensive biochemical and immunological
characterization of S. stercoralis infection, demonstrating significant systemic alterations.
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Introduction insufficient and largely unavailable. S. stercoralis has

attracted relatively little research attention. Major concern

Prolonged infection with Strongyloides stercoralis as the
culprit of persistent clinical manifestations was first
documented in 1876. The infection can profoundly impact
the host's physiology (1). Strongyloides stercoralis is the
causative agent of strongyloidiasis, a parasitic infection of
medical importance across both the tropics and increasingly
in non-endemic regions. Global estimates of people affected
remain farcically broad due to limited epidemiologic data,
whilst diagnostic tools with adequate sensitivity are both
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remains the rising prevalence of strongyloidiasis following
infection in a greater number of immunocompromised
patients. More efficient management will depend upon an
enhanced understanding of both how the host responds to
infection and what particular host predispositions facilitate
dramatic consequences (2). Strongyloides stercoralis has
been known as an emerging silent killer owing to its ability
to cause persistent or long-lasting infection accompanied by
various complications and high mortality rates. S. stercoralis
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infection can occur almost worldwide, especially in tropical
and subtropical regions. It is estimated that the global
prevalence of S. stercoralis infection could range from 30 to
100 million. The prevalence of Strongyloides infection
might be underestimated, and underdiagnosis can also lead
to a lack of epidemiological data. Hence, detecting indirect
or non-invasive forms can contribute to a comprehensive
understanding of S. stercoralis, especially within the host, for
future studies. If left untreated, an uncomplicated S.
stercoralis infection can develop into a fatal hyperinfection
syndrome (3). This nematode has five developmental stages:
rhabditiform, filariform, free-living adult male, free-living
adult female, and parasitic adult female. The infectious form
for host invasion is the third-stage infective filariform larvae
(iL3) (4). This durable characteristic of Strongyloides
species contributes to its strong adaptability to the
environment, as well as a complex life cycle involving free-
living and parasitic generations. Although S. stercoralis and
S. fuelleborni share the same parasitic patterns as human
parasites, S. fuelleborni exclusively parasitizes non-human
primates (humans are the exclusive host of S. stercoralis) (4).
Strongyloides species might secrete certain secretory fluids
from its infective stages and from the host to support the
completion of each parasitic generation. Evasion strategies,
especially the strong adaptability of Strongyloides species to
the adverse host microenvironment (temperature and
immunological response), may also contribute to the
parasitism of S. stercoralis. Ever since this threadworm was
first reported, gradually accumulating evidence suggests that
slight skin penetration by filariform larvae causes host
invasion. Dyspnea, bilateral leg edema, and eosinophilia can
also occur (5). S. stercoralis is a soil-transmitted helminth
and one of the most overlooked in the group of neglected
tropical diseases. Although it has a global distribution, little
is known about the prevalence or risk factors in most regions
(5). Infections with S. stercoralis are common in
impoverished, immunocompromised societies with poor
sanitation and close proximity to faecal soils (6). S.
stercoralis 1is the sole identified nematode capable of
reproducing both parasitically and liberally. In the parasitic
niche, the adults live within the small intestine, generally in
the duodenum. Rather uniquely, the parasitic females
reproduce in the absence of male parasites by
parthenogenesis, generating eggs that give rise to first-stage
larvae (F3), which are subsequently passed in human feces
(7). There, they develop into infective filariform third-stage
larvae (iL3), which either disperse in the soil or the host. It
is the iL3 that is responsible for host infection; they are
equipped with a sensory apparatus that detects carbon
dioxide gradients near the skin's surface. After detecting a
human host, the larvae are chemically triggered to start the
host penetration. Host entry may occur in two main ways:
the classical percutaneous penetration, followed by
dissemination to the lungs via the bloodstream, or the snap-
like invasion via oral ingestion (8). There is a clear
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predilection for the prior, notwithstanding clinical examples
demonstrating the ramifications of oral entry (9). The
spotlight on human S. stercoralis, given its clinical burden,
is warranted. The nematode repeatedly infects the host
through its unique autoinfection mode, leading to indefinite
infection until it is effectively treated. The problematic
nature of this autoinfective cycle is reflected in its
contribution to heavy infection syndrome. Here, the large
worm  burden escalates  uncontrollably, favoring
dissemination to extra-intestinal sites and engendering a far
higher mortality rate (10).

This study aims to assess the systemic effects of S.
stercoralis infection in a murine model using a combination
of biochemical, immunological, and metabolic analyses.

Materials and methods

Ethical approval
This study was approved by the Institutional Animal Care
and Use Committee, numbered 1878 dated 29/04/2025.

Experimental animals

All procedures involving animals were performed in
accordance with internationally accepted guidelines. Thirty
male Wistar rats (8 weeks old, weighing 200-250 g) were
randomly used for the study. Animals were housed in
temperature-controlled conditions (22°C+2°C), with a 12-
hour light/dark cycle, and provided with standard rat chow
(23.9% crude protein, 5.0% fat, and 6.0% fiber) and water ad
libitum.

Parasite infection

Rats were randomly assigned to three groups: control
(uninfected), low infection (500 larvae), and high infection
(2000 larvae). Infection was induced by oral administration
of infective third-stage larvae (L3) of S. stercoralis, which
were isolated from stool cultures of dogs at 25-28°C for 5-7
days. Then, using the Baermann technique, they were
collected under a microscope. Using a previous pilot study
conducted by the current researchers, low and high infection
levels were induced at 500 L3 and 2000 L3, respectively.

Sample collection

At 30 days post-infection, animals were euthanized using
CO; asphyxiation, and blood, urine, liver, and kidney tissues
were collected. Serum was separated by centrifugation (3000
rpm for 10 min) and stored at -80°C until further analysis.

Biochemical and immunological assays

Serum markers of inflammation, including IL-6, TNF-a,
and IFN-y, were measured using commercial ELISA Kkits
following the manufacturer's protocol. Oxidative stress
markers, including malondialdehyde (MDA), catalase, and
glutathione peroxidase (GPx), were quantified using
spectrophotometry.
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Renal and hepatic function analysis

Blood wurea nitrogen (BUN), creatinine, alanine
aminotransferase (ALT), and aspartate aminotransferase
(AST) levels were measured using an automated
biochemical analyzer.

Statistical analysis

All data were analyzed using a One-Way ANOVA with
Bonferroni post hoc tests. Statistical significance was set at
P<0.05.

Results

Infected rats exhibited a significant increase in pro-
inflammatory cytokines, including IL-6, TNF-a, and IFN-y,
compared to controls (Figure 1). Infected rats showed a
significant increase in pro-inflammatory cytokines,
including IL-6, TNF-a, and IFN- vy, compared with controls.
IL-6 levels were 80 pg/mL in the low-infection group. They
escalated to 150 pg/mL in the high-infection group, showing
a progressive inflammatory response (Figures 2 and 3).
Oxidative stress parameters revealed an elevation in MDA
levels, with infected rats demonstrating a 3—4-fold increase.
Concurrently, catalase and GPx activity were markedly
reduced, suggesting an overwhelmed antioxidant defense
system (Figures 4-6). Renal function parameters, BUN and
serum creatinine, were significantly elevated in infected
groups (Figures 7 and 8). BUN levels doubled in low-
infection rats, 35 mg/dL, and escalated to 50 mg/dL in the
high-infection group. A similar increase in creatinine was
observed, rising from 0.6 mg/dL (control) to 2.0 mg/dL
(high-infection), indicating significant nephropathy. Liver
enzyme analysis showed a 2.5 to 3-fold increase in ALT and
AST levels (Figures 9 and 10). ALT levels rose to 80 U/L
(low infection) and 120 U/L (high infection). In contrast,
AST followed a similar pattern, increasing to 130 U/L in
heavily infected animals (Table 1).

1401

120

100

80

60

IL-6 (pa/mL)

a0}

20

Control Low-Infection High-Infection

Figure 1: IL6 levels in different groups of rats infected with
S. stercoralis.
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Figure 2: TNF-alpha levels in different groups of rats
infected with S. stercoralis.
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Figure 3: IFN-gamma levels in different groups of rats
infected with S. stercoralis.
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Figure 4: MDA levels in different groups of rats infected with
S. stercoralis.
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Figure 6: Glutathione peroxidase (GPx) levels in different Figure 9: ALT levels in different groups of rats infected with
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Figure 7: BUN levels in different groups of rats infected with
S. stercoralis.

Figure 10: AST levels in different groups of rats infected
with S. stercoralis.
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Table 1: Details of statistical analysis

Parameter Control Low-Infection High-Infection Control vs Low Control vs High
IL-6 (pg/mL) 20+0.5 80+0.8 150+1.2 <0.03 <0.0001
TNF-a (pg/mL) 10+0.3 50+0.6 100£1.0 <0.01 <0.0001
IFN-y (pg/mL) 540.2 30+0.5 60+0.7 <0.03 <0.0001
MDA (nmol/mg) 1.0+0.05 3.0+0.07 4.0+0.09 <0.05 <0.001
Catalase (U/mg) 50+1.0 35+0.9 20+0.8 <0.05 <0.003
GPx (U/mg) 40+0.7 30+0.6 15+0.5 <0.02 <0.005
BUN (mg/dL) 18+0.5 35+0.8 50+1.0 <0.05 <0.0009
Creatinine (mg/dL) 0.6+0.03 1.2+0.05 2.0+0.06 <0.05 <0.0001
ALT (U/L) 40+0.6 80+0.9 120+1.2 <0.01 <0.007
AST (U/L) 50+0.7 90+£1.0 130+1.3 <0.01 <0.001
Discussion systemic damage since liver (ALT, AST) and kidney (BUN,

The infection caused by S. stercoralis represents a
significant but neglected threat to global health, especially in
tropical and subtropical areas with insufficient diagnostic
capabilities. The nematode's capacity to maintain infection
in humans for decades through autoinfection -creates
complex obstacles for disease control, particularly affecting
immunocompromised patients (11). Patients who undergo
immunosuppressive  therapy, including those with
HIV/AIDS or organ transplant recipients, need better early
diagnostic methods and treatment options because of the
chronic infection that can lead to heavy infection and
dissemination. This investigation aimed to thoroughly
examine the biochemical, immunological, and physiological
changes triggered by S. stercoralis infection with a specific
focus on inflammatory cytokine responses, oxidative stress
markers, and organ dysfunctions.

Infected hosts exhibit substantial increases in pro-
inflammatory cytokines IL-6, TNF-a, and IFN-y, showing
that S. stercoralis drives continuous immune activation that
could result in ongoing inflammation (12). Previously
conducted research showed that prolonged exposure to
helminths, such as S. stercoralis, creates an immune
environment (13). Research has shown that S. stercoralis
infection induces immunomodulatory changes that may
cause some affected individuals to develop regulatory or
Th2-dominant immune responses (14). The altered immune
responses make it hard to entirely eliminate the parasite,
particularly among patients with established infections.

The current research demonstrated significant oxidative
stress, as evidenced by elevated malondialdehyde (MDA)
levels and reduced catalase and glutathione peroxidase
activity in parasite-infected groups. Persistent immune
activation and inflammatory responses during helminth
infections lead to oxidative damage, which aligns with prior
research findings (15). Long-term oxidative stress worsens
tissue damage in organs involved in detoxification and
metabolic regulation, such as the liver and kidneys. The
study demonstrates that S. stercoralis infection causes severe
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creatinine) function markers rise significantly.

Infected animals showed renal impairment, which
supports existing evidence that strongyloidiasis leads to renal
complications, especially in heavy infection syndrome cases
(16). Researchers have theorized that immune complex
deposition and inflammation-related renal damage might
occur. Yet, direct kidney toxicity caused by the parasite is
still not well-defined (17). The global systematic review of
strongyloidiasis cases found that patients with concurrent
bacterial or viral infections are at higher risk of kidney
damage because these additional infections weaken the
immune system. These findings demonstrate the need to
include renal assessment in the clinical evaluation of patients
with chronic strongyloidiasis.

The current study indicates significant liver involvement
during infection, as evidenced by observed hepatic changes,
including elevated ALT and AST levels. Studies showed that
disseminated strongyloidiasis leads to hepatobiliary
complications, which include cholestatic liver injury and
hepatocellular dysfunction from continuous immune
activation (18). Intestinal nematodes, such as S. stercoralis,
cause bacterial endotoxin translocation, which worsens liver
inflammation through the gut-liver axis during parasitic
infections (19-30). The results demonstrate that liver
function monitoring is essential for patients with chronic
strongyloidiasis who reside in areas where hepatitis B or C
infections might influence disease progression.

Strongyloidiasis's ability to worsen other diseases
highlights its significance as a neglected tropical disease.
Recent research shows that S. stercoralis can coexist with
other enteric pathogens, leading to increased intestinal
dysbiosis and worsening patient conditions. Research
indicates that S. stercoralis infections have been found
alongside hookworms, protozoa, and Mycobacterium
tuberculosis, suggesting that this parasite can modify host
vulnerability to other infectious organisms (31-37). The
current research results support the idea of integrated
parasitic disease control strategies that require routine multi-
pathogen screening, especially for vulnerable populations
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such as immunocompromised patients and residents of
endemic regions.

A primary obstacle in strongyloidiasis research is limited
access to reliable epidemiological data. Endemic countries
often lack comprehensive surveillance systems, resulting in
lower case reporting and an inaccurate assessment of disease
prevalence (38-41). The latest meta-analysis findings show
that S. stercoralis prevalence estimates face challenges
because diagnostic methods and sampling strategies do not
match up (42-49). To bridge these gaps, we must implement
global initiatives to standardize diagnostic techniques,
expand screening programs, and enhance public education
about the risks of this parasitic infection (50).

Conclusion

The research demonstrates essential findings on the
systemic impacts of Strongyloides stercoralis infection,
including extensive alterations in immune responses and
oxidative stress levels that compromise organ health. The
concurrent rise in pro-inflammatory cytokines and oxidative
stress markers, together with hepatic and renal dysfunction,
necessitates a multidisciplinary approach to properly
diagnose and manage Strongyloidiasis. The primary focus of
upcoming research must be on understanding parasite-host
interaction mechanisms in detail while developing better
methods for early detection and creating specific treatments
to reduce the long-term effects of chronic infections.
Recognizing strongyloidiasis as a significant global health
threat allows us to implement better control measures to
lower disease-related deaths and illnesses among those
affected.
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