Authors
1
Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq
2
مستشفى الصدر العام ، دائرة صحة الرصافة ،بغداد، العراق،
3
Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, UPM
4
Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, City Campus Complex, Usmanu Danfodiyo University, Sokoto Nigeria
5
Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, UPM OF VETERINARY MEDICINE
6
Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, UPM
7
Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, UPM VETERINARY MEDICINE
8
Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, UPM TY OF VETERINARY MEDICINE
,
Document Type : Research Paper
Abstract
In secondary fracture healing, callus proliferate, undergo hypertrophy and the extracellular matrix becomes calcified. This step to some extent, recapitulates the embryological bone development with a combination of cellular proliferation and differentiation, increasing cellular volume and matrix deposition. The causes of the chondrocytes volume increase in secondary bone healing are poorly known, but cell membrane transporters perhaps could be implicated. We hypothesize that NHE-1 and AE-2 are among plasma membrane transporters that have a role in cellular differentiation and regulation of endochondral ossification for secondary bone fracture healing. Study of closed tibia fracture healing in 2 groups of 25 of 8-weeks-old Sprague-Dawley rats were undertaken and histological evaluation were made at 5 different time points at 1, 2, 3, 4, and 6 weeks after induction of the fracture. Histological evaluation of proliferative and hypertrophic chondrocyte zone area showed a significant difference in week 1 compared to other weeks. Immunohistochemistry study revealed a significant high level of labeling intensity of NHE-1 at the first four weeks. While labeling intensity of AE-2 showed moderate reaction at 1 and 2 weeks, that increased and reached the highest level at 3 and 4 weeks. These results suggested that NHE-1 and AE-2 had role in the endochondral ossification of secondary bone healing.
- Fayaz HC, Giannoudis PV, Vrahas MS, Moran C, Pape HC, Krettek C, Jupiter JB. The role of stem cells in fracture healing and nonunion. Int J Orthop. 2011;35(11):1587-1597. doi: 10.1007/s00264-011-1338-z
- Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 2008;15:53-76. doi: 10.22203/eCM.v015a05
- Kim HJ, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He T. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskel Dis. 2013;5(1):13-31. doi: 10.1177/1759720X12466608
- Sathyendra V, Darowish M. Basic science of bone healing. Hand clinics. 2013;29(4):473-81. doi: 10.1016/j.hcl.2013.08.002
- Bush PG, Pritchard M, Loqman MY, Damron TA, Hall AC. A key role for membrane transporter NKCC1 in mediating chondrocyte volume increase in the mammalian growth plate. J. Bone Miner. Res. 2010; 25(7):1594-603. doi: 10.1002/jbmr.47
- Loqman MY, Bush PG, Farquharson C, Hall AC. Suppression of mammalian bone growth by membrane transport inhibitors. J Cell Biochem. 2013;114(3):658-68. doi: 10.1002/jcb.24408
- Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Phys Rev. 2009;89:193-277. doi: 10.1152/physrev.00037.2007
- Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem. 2006; 54(11):1215-28. doi: 10.1369/jhc.6A6959.2006
- Hankenso KD, Zmmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury. 2014;45(2):S8-S15. doi: 10.1016/j.injury.2014.04.003
- Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551-5. doi: 10.1016/j.injury.2011.03.031
- Gibson JS, McCartney D, Sumpter J, Fairfax TPA, Milner PI, Edwards HL, Wilkins RJ. Rapid effects of hypoxia on H+ homeostasis in articular chondrocytes. Pflugers Arch Eur J Physiol. 2009;458:1085-1092. doi: 0.1007/s00424-009-0695-6
- Tattersall AL, Wilkins RJ. Modulation of Na+/H+ exchange isoforms NHE1 and NHE3 by insulin-like growth factor-1 in isolated bovine articular chondrocytes. J Orthop Surg Res. 2008;26:1428-1433. doi: 10.1002/jor.20617
- Tattersall AL, Meredith D, Furla P, Shen MR, Ellory JC, Wilkins RJ. Molecular and functional identification of the Na+/H+ exchange isoforms NHE1 and NHE3 in isolated bovine articular chondrocytes. Cell Physiol Biochem. 2003;13(4):215-222. doi: 10.1159/000072424
- Hannan KM, Little PJ. Mechanisms regulating the vascular smooth muscle Na+/H+ exchanger (NHE-1) in diabetes. Revue Canadienne de Biochimie et Biologie. 1998;76(5):751-759. doi: 10.1139/o98-093
- Yu L, Hales CA. Silencing of sodium-hydrogen exchanger 1 attenuates the proliferation, hypertrophy, and migration of pulmonary artery smooth muscle cells via E2F1. Am J Respir Cell Mol Biol. 2011;45(5):923-930. doi: 10.1165/rcmb.2011-0032OC
- Fliegel L. Regulation of the Na+/H+ exchanger in the healthy and diseased myocardium. Expert Opin Ther Targets. 2009; 13(1):55-68. doi: 10.1517/14728220802600707
- McKelvay D, Hollingshead KW. Veterinary anesthesia and analgesia. 3rd ed. New York: Mosby; 2004. 315-349 p.
- Greiff J. A method for the production of an undisplaced reproducible tibial fracture in the rat. Injury. 1978;9(4):278-81. doi: 10.1016/S0020-1383(77)80044-2
- Otto TE, Patka PM, Haarman HJTM. Closed fracture healing: A rat model. Eur Surg Res. 1995;27(4):277-84. doi: 10.1159/000129410
- Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue. Diagn Pathol. 2014;9(1):221. doi: 10.1186/s13000-014-0221-9
- Ramos J. Technical aspects of immunohistochemistry. Vet Pathol. 2005;42(4):405-426.
- Sfeir C, Ho L, Doll BA, Azari K, Hollinger JO. Bone regeneration and repair. In: Sfeir C, Ho L, Doll BA, Azari K, Hollinger JO. Fracture Repair. New Jersey: Humana Press; 2005. 21-44 p. doi: 10.1385/1-59259-863-3:021.
- Abed ER, Eesa MJ, Thanoon MG. Effects of platelets rich fibrin and bone marrow on the healing of distal radial fracture in local dogs: Comparative study. IJVS. 2019;33(2):419-25. doi: 10.33899/ijvs.2019.163169
- Amini S, Veilleux D, Villemure I. Three-dimensional in situ zonal morphology of viable growth plate chondrocytes: A confocal microscopy study. J Orthop Res. 2011;29(5):710-717. doi: 10.1002/jor.21294
- Marsh DR, Li G. The biology of fracture healing: Optimizing outcome. Br Med Bull. 1999;55(4):856-869. doi: 10.1258/0007142991902673
- Putney LK, Denker SP, Barber DL. The changing face of the Na+/H+ exchanger, NHE1: Structure, regulation, and cellular actions. Ann Rev Pharmacol. 2002;42:527-552. doi: 10.1146/annurev.pharmtox. 42.092001.143801
- Jansen ID, Mardones P, Lecanda F, de Vries TJ, Recalde S, Hoeben KA, Bronckers AL. AE-2a, b-Deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB. 2009;23(10):3470-81. doi: 10.1096/fj.08-122598
- Masereel B, Pochet L, Laeckmann D. An overview of inhibitors of Na+/H+ exchanger. Eur J Med Chem. 2003;38(6):547-554. doi: 10.1016/S0223-5234(03)00100-4.
- Sagalovsky S. Bone remodeling: cellular-molecular biology and cytokine RANK- RANKL-Osteoprotegerin (OPG) system and growth factors. Crimean J Exp Clin Med. 2013;3(1-2):36-44. doi: 616-001.5:616.71-003.93.